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ABSTRACT

' A new decision-theoretic approach to Nonlinear Programming Problems
with stochastic constraints is introduced. The Stochastic Program (SP)
is replaced by a Deterministic Program (DP) in which a term is added to

the objective function to penalize solutions which are not ‘?;;sible in

g TP AL

the mean™. The special_feature of ‘our  approach is the choice of the

. e -~

penalty function PE’ which is given in terms of the relative entropy

functional, and is accordingly called entropic penalty. It is shown
P 0/

that PE has pronerties which make it suitable to treat stochastic

programs. Some of these properties are derived via a dual reprgsentation
of the entropic-penalty which also enable one to compute P;“.;ore easily,
in particular if the constraints in (SP) are stochastically independeat.
The dual representation is also used to express the Deterministic Problem

(DP) as a saddle function problem. For problems in which the randomness

occurs in the rhs of the constraints, it is shown that the dual problem

of [(DP) is equivalent to Expgcted Utility Maximization of the clascical

Lagrangian dual function of (SP), with the utility being of the constant-
Se
risk-aversion type. Finally, mean-variance approximations of PE and

the induced Approximate Deterministic Program are considered.
ﬁ
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INTRODUCTION
Mathematical Programming problems with stochastic constraints,
(sP) inf{go(x): g(x,b) > a},

dependening on a random vector b, are the subject of our investigation.

A new decision-theoretic approach is suggested in the paper as a possible

way to treat these stochastic programs. The approach is based on imitat-

ing the penalty function method of deterministic Nonlinear Programming.

In this method the constrained problem is replaced by an unconstrained
one, in which the new objective function has the property of "penalizing”
(increasing the minimand) violations of the constraints. With an
appropriate interpretation of "violation of constraints" in the stochastic
case, and with an appropriate choice of the penalty function, to reflect
the stochastic environment of the problem, we derive a deterministic

problem (DP) replacing (SP):
(DP) inf{go(x) + pPE(x)}

where p >0 s a penalty parameter, and PE is our penalty function.

This function is given in terms of the relative entropy functional,

widely used in Statistical Information Theory, [5], [6].
if fb is the generalized density of the random vector b € Rk.
and Dk is the set of all generalized densities f of random vectors

zZ € Rk

(a1l absolutely continuous with respect to a common nonnegative
measure dt), then the relative entropy I(f,fb) between the random

vectors z and b {s

1(f.£,) = [f(t)10g Kty e .
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The penalty function is given by

Pe(x) = inf (I(f,f,): Ig(x,t)f(t)dt > a)

feD,

and is called accordingly entropic penalty. The motivation for choosing

PE and the induced deterministic program (DP) is discussed in Chap.1.
Properties of the entropic penalty, studied in Chap. 2, help further to
demonstrate the appropriateness of using (DP). It is shown that PE(x)
penalizes "violation of constraint in the mean", i.e. PE(x) =0 if
Eg(x,b) > a and Pe(x) > 0 otherwise. In this sence (DP) is a

"relaxation" of the deterministic program
inf{go(x): Eg(x,b) = a}

which can be recovered from (DP) by letting p be large enough. The

latter program includes in particular the familiar chance constraints

problem [2]. Another desirable property of Pe is that surely infeasible
solutions, i.e. those x's that are infeasible for any realization of

the random vector b, are excluded from (DP), since for those (and only
those) PE(x) = o , It is also shown that a greater "violation in the

mean" of a constraint, results in a greater penalty.

Some of the above mentioned properties of the entropic penalty are

derived from its definition, while other rely heavily on a dual representa-

tion of PE’ which also provides an easy way to compute it:

T
PF(X) = Sup {yTa - ]og Ee.Y g(X,b)} .
) y=20

The duality theory nceded to obtain the dual expression is developed in
Chap. 3. This representation can ba further simplified , and for

independent consiraints (i.e. gi(x,b) = gf(x’bi) and the bi's are

independent random variables) it has an explicit representation ia term

R A
:
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yig:(X.b-)

of the function wi(t) = log Ee " ' !

and its derivative. The
dual representation also enable us to express the deterministic problem
(DP) as a saddle-value problem, and finally to demonstrate that (DP)

is equivalent to the problem

inf sup Eu(zb(x;y))
x y=20

where U is the Constant Risk Aversion (CRA) utility function

u(t) = e~ (1/P)t 4ng 2p(x,y) is the classical Lagrangian corresponding
to (SP):

1, (x:y) = g,(x) - ¥'(g(x,b) - a).
The important special case of (SP):
(SP-RHS) inf{go(x): g(x) <b}

is thoroughly discussed in Chap. 4. The outstanding result which is
obtained for such convex stochastic programs is the nature of the dual
problem to the primal entropic-penalty program (DP); The dual decision-
maker is an expected utility maximizer, posses3ing a CRA type utility
function U with an Arrow-Pratt risk indicator (-U'/U®) equal to the

recivrocal of the penalty parameter. ‘hile in the deterministic case

the dual problem is

max (inf zb(x,y)),
y20 X

in the stochastic case our approach leads to the dual problem

max EU(inf zb(x,y)).
v20 X

The Expected Utility Maximization is ona of the fundamental

approaches of Economics and Cecision Theory under Uncortainty. The
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fact that (DP) generates such a sound dual is perhaps the most convinc-

ing argument in favor of the entropic penalty approach.

| in Chap. 5 we obtain simple approximations of PE(x), in terms of

‘ the mean vector and the variance-covariance matrix of the raniom vector

! l g(x,b). The approximated entropic penalty ﬁe(x) is then given as the

N optimal value of a simple convex quadratic program with only nonnegativity

constraints, or, for independent constraints, by an explicit formula

involving mi(x) = Egi(x,bi) and o?(x) - the variance of gi(x.bi):
f
- 1 1 |‘ 2
. P.(x) = 52 max(0,a, - m.(x))]
’ E 2 0?()() L 1 1
t For stochastic RHS Problems the approximations reduce to:

; 5E(x) = Sug{yT(u - g(x)) - %-ery}
. y=

‘ where u = Eb and V is the variance-cuvariance matrix of b. The
: approximation is exact if b is jointly Normal: b ~ N{(u,V).
Using ihese approximation in (DP) one obtains an Approximate
Deterministic Problem (ADP):
| (ADP) inf{g,(x) + pﬁE(X)}.
. As an illustration, for a stochastic RHS Problem with independent bi's

2 s .
(having u; and variance °i) the Approximate Deterministic Problem is:

(ACP) inf{go(x) + % X 3? [max(o,gi(X) - ui)}z} .

i .

The latter program is similar to the one used in the classical

penalty Ffunction method for tha constirained (deterministic) problem

inf{go(x): g{x) <y}

! o : L R e TR, YW T
N L ) —

v




except for the presence of the coefficients I/o:. The role of these,
in the stochastic case, is to attribute smaller significance to "more
ambiguous" constraints, i.e. those for which the rhs bi has larger

variance.

Problem (ADP) just mentioned, and a score of other problems
occuring in the paper, give rise to interesting problems in Nonsmooth
Optimization that may entail the use of numerical methods developed

for such purposes, see e.g. [1], and [7].

As a general introduction to existing methods in Stochastic
Programming, the reader is referred to the excellent review articles

by Dempster (Part I in [3]) and Kall [4].
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CHAPTER 1 - THE ENTROPIC PENALTY APPROACH

Consider the nonlinear programming problem
(sP) infig (x): g(x,b) >a},

where x € R" s the decision vector; b € Rk and a € R" are fixed

parameters, and g is the vector-valued constraint function g: R" ka+Rm.

Let the feasible set be denoted by
Sp = {x: g(x,b) > a}

Frequently (P) is converted ta an unconstrained problem by adjoining

to the objective function go('x) a penalty function P(x) and thus

replacing (P) with
inf(g,(x) + pP(x)} (1)

where p > 0 is a penalty parameter. The function P(x) is gererally a dist-

ance function measuring how far is x from the feasible set, i.e.

P(x) = dist(x,sb),

but it can also be given in terms cf the distance batwieen b and the

set

S;l = {z: q(x,z) > a} ,

P(x) = dist(b,s]') = inf(dist(b,z): z € sy .
z X

Problem (1) becomes then

'Inf[g {x) - o infldist{b.z): g{x,z) >a}} . (2)
x U9 z




The original problem (P) is in fact a special case of problem (1) with

0 if g(x,b) >a
P(x)
© otherwise

or with finite-valued P(-) but with penalty parameter p very large.

In other cases (1) (and hence (2)) can be viewed as a relaxation of (P).

Assume now (and henceforth in this paper) that the.parameter vector
b is stochastic, with distribution function Fb(-), absolutely continuous
v.r.t. a nonnegative measure dt, and possessing a generalized density
(Radon Nikodym derivative) fb(-). Let B c:Rk be the support of b.
Looking back at problem (2), one should naturally
think now of z as a random vector. Thus it remains
to interpret two things: (a) the meaning of a "distance between two
random variables" and (b) the meaning of "g(x,z) = a" when =z is random.
As for point (a) there is a classical answer, which is the fundamental
concept in Statistical Information Theory (see e.g. the book by

Kullback [5])
. £8)
dist(b,z) = I(fz,fb) = JBfZ(t) log ?;TET'dt

The integral I(fz,fb) js the so called relative entropy or divergence.

It legitimacy as a “"distance function" comes (among other things) from

its well-known property

Proposition 1. I(fz.fb) 20 and is cqual to zero if and only if
f, = fy (a.e.).

* This is a short notation for

F-(t]r---’tk)
II I f (t]. o.gtk)]ug bm dt],-oodtk
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As for the second point (b), we adopt the interpretation that

"g(x,z) = a holds in the mean", i.e.

Ezg(x,z) >a.

The result is a penalty function PE(-), called entropic nenalty, which

is given by

PE(x)= inf {I f(t)log %L%%T dt: I gi(x,t)f(t)dt >=ai, i = i,...,m} (3)
f€Dkk B b B

where Dk is the set of all generalized densities of random vectors

k

Zz € R", which are absolutely continuous w.r.t. the measure dt.

In terms of the entropic penalty, we introduce the Determinstic
Primal (DP) problem as a surrogate for the Stochastic Primal (SP)

problem:
(DP) inf{g,(x) + pPg(x)} .

Let us note then if x 1is such that Fb itself satisfies the

constraint in (3), i.e.

Ebg].(x,b) >a;, i=1,...,m, (4)

then the optimal density is fb itseT?, and Ly Propositicon 1 it follows
that P(x) = 0. At the same time, if x is such that (4) is violated
tien P(x) » 0. Therefore, (OP} is a relaxalion cf the following, move

naive, detorministic replacement of (SP), namely

inf{go(x): Ebg(x,b) >>a}r . (5)

¥ o

’
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As a concrete example, let g(x,b) be chosen as
1 if g(x) <b
g(x,b) = { (6)
0 if g(x) kb

and let a=1-a (0 <a < 1). Problem (5) becomes the well-known

Chance Constrained program (see [2]):

(CC) inf{f(x): Pr(g(x) <b) >1-a} .

The corresponding Deterministic Primal, which in this case is

denoted (CCOP),

(CCOP)  inflgy(x) * peinf (I(f,f,): { F(t)dt > 1-a1}
X feD, g(x)

penalizes violations of the chance constraints. (CC) can be recavered

from (CCOP) by choosing p sufficiently large.
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CHAPTER 2 -~ PROPERTIES OF THE ENTROPIC-PERALTY

In this Chapter some important properties of PE are derived.
Additional properties will be discussed in Chap. 3 as well. These
properties demonstrate the appropriateness of using the entropic penalty

for solving Stochastic Programming problem.

Proposition 2:

[ = i
0 if Ebgi(x,b) > a; vi
PE(x)1 = o if §i(x) = sup gi(x,b) < a, for some i
beB !
\ positive and finite - otherwise

Proof: By Proposition 1, PE(x) 20 with equality if and only if

the optimal f is equal to fb (a.e), this is possible if and only if
fy, is feasible i.e. Ebgi(x,b) E=ai, vi. It remains to show that
PE(x) = ™ if and only if éi(x) <a; for some 1i. The latter means
that the constraints in (3) are infeasible, implying PE(x) = », That
the oppesite is also true (i.e., PE(x) = » implies (3) is infeasible)

follows from Theorem 1(b) in Chap. 3.

The proposition demonstrates that PE is a penalty function
for the constraints Eg(x,b) >a and a barrier function for the
constraints g(x) = a. The Deterministic Primal problem (DP) can be
rewritten as

(oP) inf{go(x) + pPe(x): g(x) > ay .
X

Note that g(x) #a means that x 1is not feasible for the original

(SP) problem fer any realization of b, and exactly these surely

= :
T—— ———

<
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The next two results concern independant constraints. We say that

g(x,b) # a are independent constraints 1if the components {bi} of b
are independent random variables, and if, for each i, the i-th cons-

traint depends cnly on bi’ i.e., k=m and
g;(x,b) = g;(x,b;)

We make it clear that in this case, the set Dk in (3) is the set of

all generalized densities of random vectors 2z € Rk

£4(t).

» with independent

m
components, SO f(t],...,tm) = .n]
1:

Proposition 3: For independent constraints, PE is given by
x i
PE(x) = if]PE(X) where ‘ )
PL(x) = inf
fi€

f.(t,)
D]{Ifi(ti)log ?;;TTT'dti’Igi(x’ti)fi(ti)dti >‘ai}

Proof: The result follows from the well-known additivity property
of the relative entropy for independent random variable ([5] Th. 2.1).
a
The proposition expresses the useful fact that, whenever the cons-
traints are independent, the penalty for the system of constraints

equals to the sum of penalties for the individual constraints.

We say that x1 is less feasible than x2 for the i-th constraint

(in the mean) if

Ebgi(x],b) -8 < Ebgi(xz,b) - .




—> .
Propositicn 4: Let the corstraints of (SP-RHS) be independent. If x! is

less feasible than x2 for the i-th constraints, then

| pé(x‘) > P::(xz) . 0

f ‘ The next results concerns Stochastic RHS problems:

(SP-RHS) inf{g (x}: g(x) <b}

This is a special case of (SP) with

g(x;b) =b - g(x), a=0 . (8)

‘( Proposition 5: For a Stochastic RHS problem

Peix) = inf (I(F,f,): Itf(t)dt > g(x)} .
feD
k

o
k . If (SP-RHS) 1is a convex program, then PE(x) is a convex function.

Proof: The equation (9) follows from a simple substitution of (8) in

(3). The convexity result will be proved in Chap. 4 via a dual

expressicen for PE' from which the conclusion of Proposition 4 follows too. a

A convexity result holds also for the chance constrained problem (CC).

The proof is also postponed to Chap. 3 (see Remark 1, following

Example 1).

Proposition 6: If (CC) has independent and concave constrzints (i.e.

for each 1 and each bs s Pr(gi(x)=< bi) is a concave function of x)

then PE(x) is a convex function.




CHAPTER 3 - A DUAL REPRESENTATION OF PE AND A SACDLE FUNCTION
REPRESENTATION OF (DP)

The value of the entropic penalty function PE at a given point x,

is the optimal value of the extremal problem

f(t
E inf I(f) = [f(t) dt
© e 1o j()og%fbt

subject to (10)

[sormarza, e

We will write this shortly as

PE(x) = inf(E).

By constiucting a dual problem for (E), say (H), a dual representation

of PE will follow:
PE(x) = sup(H).
To construct (H) we first need an auxiliary result.
Lemma 1: Let c(t) be a given positive summable function:
Jettrat = ¢ <
Then .
inf If(t) log g%%;vdt 2 - log Ic(t)dt. (1)

fEDk

Proof: Use the identity

jf(t)mg :—i%;—dh If(t) log 5876 dt - log C. (12)

Mow, since «c(t)/C is a density, it follows from Proposition 1 that




v ; TS ——
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the first term in the rhs of (12) is minimized by f(t) = c(t)/C and '

its optimal value is zero, so the infimal value of the 1lhs of (12)

is -log C, as claimed.
. 0

} m tJe now form the Lagragian of problem (E), L: Dk x RT + R with
values ‘

' m T
t L(f,y) = I(f) - Z vy, Igi(x.t)f(t)dt tay .

i=]
The dual objective function is

gly) = :UP L(f,y)

€D
y k
{ or, more explicitly
= g(y) = inf (I(f) - zyifgi(x,t)f(t)dt +a'y)
i feD,
| < ine {[Trog(E81) - Jrityee} w”
‘ }2Sk UL 0g fé(f7' zyigi(x,t)Jf(t)dt +a'y
- { f(t) \ T
40, { tos ety g TE) F(tde} ¢ aly
£y;9:(x,t)
» aTy - log jfb(t)e Lae dt, (by Lemma 1).
So, the dual of (E) is
i:. T T.y,-gi(x,t)
(H) sup fa'y - log Jfb(t)e dat} .

. y=0

Theorem 1: [Duality Theory for (E)-(H).]

! ? {a) If (E) is feasible then inf(E) is attained and

min(C) = sup(l).
(b) sup(H) < = if and only if (E) is feasible

TTTITTY W R R L A T
e .

——— ————

<&




- 15 -

(c) sup(H) is attained if there exists a density f in Dk satisfying
the constraints (10) strictly, in which case
min(E) = max(H).

Moreover. if f*€ D, solves (E) and y* =0 solves (H) then

-Zy¥g:(x,t)
fb(t)e ™M

f*(t) = (a.e.)

-Iy*g.(x,t)
Jfb(t)e 1% dt

Proof: We set problem (E) as a convex problem, in an appropriate vector

space, with finitely many linear constraints, as follows. Let M(B) be
the linear space of real-valued finite regular Borel measure (rBm) on B.
Let dt be a nonnegative rBm on B. For yu € M(B),which is absolutly
continuous w.r.t. dt we denote by %% its Radon-Nikodym derivative.
Whenever u € S (the convex subset of probability measures) we call

f(t) = %%- a (generalized) density. Let

I f(t)log ;i%%y dt if u is an abs. cont. probability
B b

- du
Iu) = measure, and f dt

o otherwise
and consider the linear operator A: u(B) -» R™

Igi(xgt)du

jgm(X.t)du
Then, problem (E) amounts to

inf(d(u): Au > a} .




s e,

Now, (H) is just the Lagrangian dual of (14) (which here coincides with
the Fenchiel-Rockafellar dual [11]) and most of the results in the theorem
follow from standard duality relations (e.g. [10], [11], and [8]).

Thus, the fact that the dual (H) has only nonnegativity constreints y =0
(and hence satisfying the strongest constraint qualification) imnlies

lack of duality gap and attainment of the primal infimum. Part (c) is

just the usual dual statement. As for part (b), the implication

(E)feasible = sup(H) < =
follows from weak duality. Thus, only the reverse implication

(E)infeasible = sup(H) = = (15)

is exceptional here and needs special care.

The feasible set of (E) is

Ap = a Tu

1 u nonnegative (16)

where A is the linear operator (13), and T 1is the linear function
u—I—+ Jdu

Using a duality theorem for linear program in vector spaces (e.g. [8],

Theorem 3.13.8, p. 68), it follows that the infeasibility of (16) is

equivalent to the feasibility of

Aty + T*v <0, y'a+v' >0 y€RT. vVER . (17)

Here A*: R™ > C(B), T*: R » C(B) are the adjoints of A and T
respectively: A*y = Iy.g.(x,t); T*v = v (a constant function in C(B) -
the linear space of continuous function on B — the dual space of M(B)).

So, (17) implies that

- RN o N JUE ArS S s &
R SRR Yoy STRELIRY
-

— -_—
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{39 20, v €R such that

17;0;(x,t) + V<0, F'a+¥>0. (18)

Now, using the identity
0=v-log eV

it is easy to see that the dual program (H) is equivalent to

£y;9; (x,t)+v
sup {y'a + v - log Jfb(t)e dt} . (1¢)
y=0,veER

By taking y, v from (18), and M > 0 arbitrary large, it is seen that
the sup in (19) is made arbitrary large by choosing y = My, v = Mv,

i.e. sup(H) = = ., a

from Theorem 1 we obtain a dual representation of the entropic
penalty function, which is much simpler than the primal expression
given by (3):

m
Z y;9;(x,t)

PE(x) = sug {yTa - log Jf’b(t)@=1 dt} . (20)
y2

This representation is a key factor in deriving important facts (some
mentioned already in Chap. 2) about PE and about the dual problem of

(DP). As an “"appetizer" we obtain the explicit expression of PE for

independent chance constraints.

Example 1: Prcblem (CC) with independent constraints is

inflgy(x): Prg;(x) <b;) >1-a;, 1 =1,...,m

and the corresponding (CCDP) problem is

inflg,(x) + pePlix)}.




|
|
?
|
i
;
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By (20):

J 5’91-'(x.t)d

Pé(x) = sup {y(l-ai) - log fb(t)e

t} . (21)
O<y€R

Recalling from (16) that

1 if gi(x) <t
g_‘(x,t) ={

0 otherwise

we get from (21), in term of the cumulative distribution function

F; of bi’

PL(x) = sup {y(1-a3) - 10gl(1-Fi(e, (x)))e’ + F(g; (I} . (22)

By simple calcuius, thce maximizing y is yg given by

[ [(1"01)Fi(91)]

logl—;;TT:?;TE;T if F(gi(x)) > a,

yi=
0 if F(gi(x)) <ai
Substituting y% in (22) yields
' 0 if Fi(gi(x)) <ui i.e. Pr(gi(x) <bi) >]-ai
1 ai ( 1-01 .
ui 0g m"‘ (1-ai)1og\m) if Fi(gi(x)) > ui .

R 10T . . % o
emark 1:  The function h;(t) = a; log — + (1-a,) log 7= s

convex and increasing for 0 <a; <t <1 and h(ag) = 0. If F.(g,(x))
is convex (i.e. if Pr(g;(x) < b;) is concave in x) then hi(Fi(gi(x))

is convex for x such that a; < Fi(gi(x)). This proves that Pg(x) is

convex since ty the above and (23):
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PE(X) = hy(max(ay Fylgg(x)).

The objective function in (), in term of which PE is computed,

is yTa - w(y) where

:
¥(y) = log ge¥ 9L0P) (24)

If the random vector g(x,b) 1is nondegenerate (i.e. Wy # 0, yTg(x,b)

is not a degenerate univariate random variable), then y(y) is strictly

convex, as follows from the following:

Lemma 2: If Z 1d4s a nondegenerate random vector in Rm, then the
function

T
#ly) = log Eje¥ -

is strictly convex in y.

Proof:  Consider the function h(t;,t)) = t}ta™ (0 < x <1). It is

strictly concave for ty > 0, t2 >0, t] # tZ’ so by Jensen inequality

YR ED) A 1=2
y{Z yZZ
Put t] =e t2 =e © , then
Tz T T

Y, (I-A)yZZ 2% ¥ol 1-A
Ez(e ] ) < (Eze ) (Eze )

or, taking log,

T
(yy#(1-3)y,) vz yiz
log E,e < Alog Eje ~ + (1-2) log Ese

which proves the strict convexfty of ¢(y).
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We will derive still another expressicn of PE in term of the conjugate

function ¢* of w i.e.

|
g _ v (u) = sup (uly - w(y)).
; | y

Proposition 7:

. Pe(x) = inf y*(u) (25)
uza

where y* 1is the conjugate of the strictly convex function ¢, given
T
in (24). Moreover, if the expectation Ebey 9(x,b) is finite for

every y then
v (u) = uw (W) - w(ve () (26)

where vy 1is the gradient vector of ¢, i.e. the i-th component of

w is
T
Lvely)l; = T
£ e¥ 9(x.b)
b
Proof: By (20)
T
Pe(x) = sup {y'a - wly)} . (27)
y20
The Lagrangian dual of the problem in the rhs of (27) is easily seen W

to be

inf v*(a+v)
v20

and with change of variables u = a+v one obtains (25). The strict
convexity of ¢ follows from Lemma 2, and the finiteness assumption

implies that ¢ 1is also smooth. Hence vy s a strictly monotone
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mapping and ¢* coincides with its Legendre Transform, which is

the rhs of (26) (see [12], Chap. 26). a
Example 2:  Consider the Stochastic RHS problem (SP-RHS) with b a
jointly Normal random vector, with mean vector y and covariance matrix
V (positive definite since b is assumed nondegenerate). Then a direct
computation shows that here (20) becomes the quadratic program:

Pe(x) = sup ' (g(x) - ) - %—yTVy} ,
y=0

while (27) is the dual quadratic program:

Pex) = inf ((g(x) = u - WV (g(x) -u-u)}
u=0 '
For a Stochastic Program with independent constraint a further
simplification of the expression for PE is possible. In fact, the
infimum in (25) can be computed, and we get an explicit representation

of PE in terms of the conjugate function w; of

¥;9; (x’bi)
¢i(yi) = log Ebie .

We use the following notations: for a function h(t), h: R+ R Tlet

' R
bh = -4 h, D“h=(dh)

o

d dt
Let also

mi(x) = Ebigi(x’bi)'

Proposition 8: For (SP), with independent constraints

m
Pe(x) = 1§1wq(max(mi(x).ai)
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where
vi(t) = tD"wi(t) - wi(D"]wi(t))- (29)
Moreover, w;(t} js a strictiy increasing function for t > mi(x).
Proof: By Proposition 3, Pc(x) = zPé(x), therefore we have to show that
PL(x) = wh(max(m;(x}.a;)).
Now, from Preoposition 7:

j o
PE(x) = inf ¢?(”i)

where w; is exactly given by (29). The function *: is strictly

convex and simple calculus shows that

PE(X) = inf y¥(u) = w?(max(D’]w*(O),ai)) . (30)
uza.
i
But it is a well known fact of conjugate functions that D']w* = Dy, SO
D71¥*(0) = Du(0) = E, g;(x,b) = m. (x). (31)
i

Using this in (30), the desired expression for PE is obtained. To
prove the last statement of the proposition, note that from (31)

0 = Dy*(my(x))

and since ¢* 1is strictly convex, this implies

Du*(t) > 0, for t > mi(x),

which establishes the claimed monotonicity.
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Remark 2:  The last statement of Proposition 8 and (28) provides a
proof for Proposition 4.

Consider the saddle function

T .
K(x,y) = gy(x) + ply'a - log Ege¥ 3%P)). (32)

Then, by the dual expression (20) of PE’ we see that the Deterministic
Primal problem (DP) becomes

(DP) inf sup k(x,y).
x y=20

An equivalent program will be generated if we use another saddle function

- ‘l)' k(xs.Y/p)
.C(x,y) =-€

obtained from k by one-to-one transformations of its domain and range.

Mow, a 1ittle algebra shows that

1 T
- Lg (x) - b)-a)}
£(x,y)= _Ebe P go(X) y (g(x ) a) ,

thus, we proved:

Thecrem 2: The Deterministic Primal problem (DP), derived via the

entropic penalty approach, is equivalent to the saddle-function problem

(OP-EU)  inf sup EU(zy(x,y))
x y20

O

- t
where U(:) is the constant-risk-aversion utility function U(t)= -e

(or any positive affine transformation of it) and where zb(x,y) s

the classical Lagrangian corresponding to the original (SP) problem, i.e.

t(x,y) = g (x) - ¥ (g(x,b) - a).
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CHAPTEP. 4 - THE DUAL PROBLEM OF (DP) FOR STCCHASTIC RHS PROGRAMS

In this secticn we treat exclusively the problem
(SP-RHS) inf{go(«): gi(x)fi b, i=1,...,m}

This is a specialization of the general (SP) problem with
g{x,b) = b-g(x) and a = 0. The expression for the entropic penalty,

is given in (9). From the results of Chap. 3, dual representaticns of

PE are, by (20) and Proposition 7:
T y'b
PE(x) = sup {y g(x) - log E e’ "} (34)
yz0
or
Th
PE(X) = inf ¢*(u) where ¢(y) = log Ebey , and
uzg(x) (35)
wry L T B
¢*(u) = uve (u) - ¢(ve (u)).
If the bi's are independent random variables with E(bi) = Wis then
by Proposition 8:
n u Yibj
Pe(x) = i§]¢‘{(max(gi(x),u]-) where ¢.(y) = log Ebie and
(36)

#5(t) = tD7T0.(t) - o (07 V0. (2)).

Note that by (34), if g(x) is convex so is PE(x), as was claimed in

Proposition 5. From Proposition 2 we also know that

=0 if g(x) <y .
4
positive and finite - otherwise i
.___...-—-—f._—~._.,_‘<-__- - - ) —— i-;,—— -
i st o, s il L oot
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Here bmax is the vector whose i-th component is the right extreme

value of the support of b].. Therefore, the Daterministic Primal problem

is here a relaxation of the problem

inf {go(x): g(x) < u}
X

and it rules out surely infeasible solutions, i.e. those x's for

which g(x) % bmax

We have already computed PE for the case of joint Normal random
variables (Example 2). We add here two more examples for (SP-RHS)

with independent bi 's.

Example 3: (Independent Poisson variates). Let the bi‘s be
independent random variable each having a Poisson distribution with

paraneter (mean) A;s SO

l—‘
1
>
-de
-

fbi(k) =R e Ay k =0,1,2,....... .

The function 1!1-(-) in (36) is the log of the moment generating

function, so
¢1(.Y) = Ai(ey - ])-

The derivative is D¢1.(y) = Aiey, the inverse is D']¢1(t)=log(t/2\i)
and thus by (36):

o5(t) = t Tog(t/ag) - t + 2y .

Note that ¢*i' is a convex and strictly increasing function for t»> *i’

as anticipated by Proposition 8.
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The final expression for Pg is by (36):

m (g5(x)-2s), (9,000 (g, (x)-x) ¢ *
Pix)= 2 x.{/1+--—-1———~1——) 109-/1-1~ ! L ) - ! +} ,
A A \ A oo |
Example 4: (Independent Gamma variates). Let each b, have a Gamma

distribution with parameters A and ri» i.e. the density is

ri-] -Xit

A
1
= ( ’ (A‘t) e Iy t > 0.

The mean is 1y,

i © E(bi) = ri/xg, and the moment generating function is

—r.
(- y/Ai) Ty < Ai). Therefore here

¢i(Y) = °ri]09(1-y/ki) = -Pi109(1-yui/ri)- Yy < ri/ui H

00() = maie 5 07(0) = (rfu)(Tow/t)s £ s !
oly) = ri-uiy ’ P - ri di 'Ui ’ > ui ’

¢$(t) = ri[t/ui‘]‘]OQ(t/Ui)] ’ t> ug - 1

We obtain finally from (36):

Pe(x) = 2, {—————(g"(’)-“i)* - Tog (1 + ekl -

Note that for the Gamma distribution, the variance (o%) of by's is
o% = ri/A§ = u%/ri, 0 r. = u%/o% and P is given in terms of the

mean and variance by

vu% (9-(X)-ui)+ [ (gi(x)-u.)
rel) = == {1t - 0g (14 e ) (37)

1

+ For a real number a we denote a, = max(a,0)

N
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In terms of the saddle function (32), which here becomes:

| T ,on y'b )

, : k(x,y) = g {x) + ply'g(x) - log E;e” 7) (38)
i The Primal Deterministic Problem inf{go(x) + pPE(x)} is

; (DP-RHS) inf sup k(x,y).
! x y=20

We define the Dual Deterministic Problem (DD-RHS) corresponding to

(DP-RHS) by

(DD-RHS)  sup inf k(x,y).
y20 x

Thus, the dual objective function is

3 h(y) = inf k(x,y) (k(x,y) given in (38))
. X
i i and the dual problem is
‘ (DD-RHS)  sup h(y).+ | l
' y20

The key issue, of course, regarding the dual pair (DP-RHS) and

% (DD-RHS), is the lack of duality gap, which here corresponds to the
? existence of saddle value for k, i.e. the validity of
A
inf sup k(x,y) = sup inf k(x,y). (39)
T x y20 y20 x
4 In this connection we make use of two conditions which guarantee (39)

N for a general convex-concave saddie function Kk(x,y).

. Condition 1: (Stoer [13] Corollary 2.13) "The inf sup k(x,y) is attained
- x y20

+ The problem may include implicitly more constraints on y coming

from the requirement Ebey b, -,




|
i
|
|

and k(x,+) is strictly concave".

Cendition 2: (Rockafellar [9], Theorem 8(1), see in particular the

Example on page 173) "Ho nonzero Yo = 0 has the property -
T [4 n "
yovyk\x,y) >0 v(x € R, y > 0).

We now establish a minimax theorem for k(x,y) in (38).

Theorem 3: Let (SP-RHS) be a convex aprogram, (i.e. g, and gy,
i=1,....m are convex functions), and consider the saddle function
in (38):

T
k(x.y) = g (x) + p(yTg(x) - log Ege’ ") .

Then, either one of the following two conditions

(i) inf sup k(x,y) 1is attained
x y20

.o ~ n ~
(ii) 3x € R" such that g(x) < bmax’
implies the existance of a saddle value for k, i.e.

the validity of (39).
Proof: The convexity of g , and al 9 (i =1,...,m) implies that
k(+,y) 1s convex for every y = 0. From Lemma 2 we know that

T
¥ly) = log Eje¥

is strictly convex, hence k(x,-), in (38), is strictly concave. There-
fore, condition (i) in the Theorem suffices to imply condition 1 of

Stoer. Condition 2 of Rockafellar reduces here to the nonexistence of

a nonzero y, # 0 such that

Tb ,
yo{g(x) - gle;——)-] >0 wv(x€eRr", y > 0).

EeY b




|
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This is clearly satisfied .if

-~

-~

- - yb - :

3x and y > 0 such that g(x) < 512%———1 = w(y) . (41)
EeY P

To show that condition (i1) implies (41) it suffices to demonstrate that

- 2
=(b ) < =, . 42
by = (bray); o:;QR"‘ 3 b(y) | (42)

Let wi(yi) = w(0,0,...,yi,... 0), i =1,2,...,m, fi.e.

y:b
"’i(./.') = ]Gg Ee i .
Note that

sup ¥ily;) € sup %'D(Y). vi
OsyieR OsyeR i

hence to prove (42) it suffices to prove that

y.b
- E(be ' 1)
by < sup yi(y;) = sup ("—T‘) (43)
Osy,€R Osy, Eeyi i

For this purpose consider a special case of problem (E) in Chap. 3
with a sincle random variable bi,» and with a; = Si' gi(x’t) =t

and a sirngle .onstraint (the 1{-th), i.e.

(Ei) inf {I('f,fb ): rtf(t)dt)t;i}
feD, i

The dual program is (see Chap. 3)

- y.b -
(”i) sup {b.iy - log Ee : {} = Sup {b‘iy - "’i(.Y)}
OsyeR y20

R T v

g
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Program (Ei) is clearly feasible (take 7(t) =1 for t = b; and
f(t) = 0 otherwise) and hence, by Theorem 1, sup(Hi) < =, Now wi(y)

is convex and wi(O) = 0, hence by the gradient inequality
0 = v;(0)> v (¥) - yui(y)
and we get

= > sup(Hy) = suplbyy - v;(¥)} > sup(byy - yuj(y)}
y=0 y=0

= suply(b; - 4}(y))}
0 °

For the latter to be finite for y » « it {s necessary that Ei<§1im¢%(y),
Yoo
but since w% is strictly increasing (a derivative of the strictly

convex function wi) this is the same as (43), and the proof is completed.

a

Remark 3: Condition (ii), which guarantees the lack of duality gap

for (DP-RHS) and (DD-RHS), is extremely mild. Indeed, if it does not
hold, then for aimost all realizations of b, the original (SP) problem
is infeasible. If such il1l-posed stochastic programs are rules out, then
the enrtropic penalty Deterministic Primal always induces an equivalent
dual program. e shall see shortly what is the meaning of this dual

pregram.

Remark 4: Condition (ii) implies in fact a stronger saddle-value

result than (39), namely

inf sup %{x,y) = max inf k(x,y).
X y20 y20 X

i.e. tho supremum of the dual objective function h(y) is attained.

(sec [9]). Condition (i), vhich assumzs that tfor some X,y > 0

R e

——— —————”

et el i i it S e s

»
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inf sup k(x,y) = k(x,¥)
x yz0

implies in fact attainment of the dual saddle value at the same point,
i.e.

sup inf k(x,y) = max min k(x,y) = k(x,y). (See [13].)

y20 x y20 X

Remark 5: Stochastic Programs satisfying condition (i) or (ii) of

Theorem 3 will be called well-posed.

Let zb(x,y) be the classical Lagrangian corresponding to (SP-RHS):
_ T
2, (x,b) = g (x) +y (g(x) - b)
and consider the constant-risk-aversion (CRA) utility function

1
u(t) = -e P (or any positive affine transformation of it).
It follows from Theorem 2, that the primal problem (DP-RHS) 1is

equivalent to

(DP-EU) inf sup Eu(zb(x,y)).
X y20

Therefore, the dual problem (DD-RHS) is equivalent to

(DD-EY) sup inf EU(zb(x,y)).
y20 x

To get the full meaning of this dual problem we first prove

Lemma 3:

inf EU(zb(x.Y) = EU(inf zb(x,y)) . (44)
X X




|
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Proof:

EU(inf zb(x.y) = E inf U(nb(x,y) since U is monotone increasing
X X

- ‘3 (go(X)+yT9(x)-yTbx
E inf{-e } =
X

E(e% YTb)inf {-e- -;—(go(x)+yTg(x)} _

X

1 7T 1 T
- b - - )+
(Eep Y ) (-e P (go(x Y g(x)) = inf EU(zb(x,y)) .

X a

inf
X

Recall that for a non-stochastic problem, the classical Lagrangian

dual is the concave program

sup h(y) = inf zb(x,y) .
y=0 X

From the lemna we observe that in the stochastic case, the dual problem

(DD-EU) consists of maximizing the expected utility of the Lagrangian dual function

with the utility function being of the CRA-type. More precisely,
combining the results in Theorems 2,2 and the Lemma 3 we have actually

proven:

Theoram 4: Consider a well-posed convex stochastic program (SP-RHS).

Let (DP-RHS) be the ccrresponding entropic penalty Deterministic Primal
and let (DD-RHS) be the corresponding Deterministic Dual. Then, (DD-RHS)
is equivalent to the concave program

(0D-EU)  max “U(h(y)); (y) = inf 2, (x,y)
y=0 X

vhere U is the CRA-utility Fuaction with th2 Arrow-Pratt risk indicator

being equal to the reciprccal of tha ponaity parameter P,

T ek
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CHAPTER 5 - MEAN-VARIANCE APPROXIMATIONS

We obtain in this section quadratic approximations of PE(x), for

the general (SP) problem
(sP)  inf{gy(x): g(x,b) >a) .

For every fixed x, the random vector g(x,b) is assumed non-
degenerate, with mean vector
m(x) = Eg(x,b)

and (positive definite) variance-covariance matrix
V(x) = cov(g(x,b)) .

The variance vector (diagonal of V(it))is denoted by o¢2(x).

Recall from Chap. 3 that
- T
Pe(x) = sup {y'a - y(y)}
y=20
where

:
oly) = log £e¥ 900} (45)

Now, straightforward calculations show that

$(0) =0 _ (46)
v(0) = m(x) (47)
924(0) = V(x). (48)

Hence, a second-order Taylor expansion of y(y) yield tie following

approximation 5E(x) of PE(x); in terms of a concave quadratic program.

e R VA SR

e,
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Proposition 9:

Pe(x) = sup ty'[a-n(x)] - %-yTV(x)y} )
y=0

Another expression for the approximation PE(x) is given in terms of

the following convex quadratic program.

Proposition 10:

Pe(x) = inf 3 (u-m(x))V(x) 7 (u-m(x))}
uza

Proof: By Proposition 7: PE(x) = inf y*(u) where ¢* is the conjug-
u2a
ate function of ¢ in (45). Thus it remains to show that a second

J order approximation @* of ¢* s
\ - ] T 1
v*(u) = 5 (u-m(x)) V(x)" " (u-m(x)). (49)
i Since the gradient of ¢ and its conjugate are inverse operators,
, j.e. wp* = v ', (see [12], Chap. 26) it follows from (47) that
vp*(m(x)) = 0 ' (50)

and so, by (26) and (46), also

¥*(m(x)) =0 . (51)
Now
g v2gx = 9(vp*) = VL) '] = (2(77)17, by the Inverse

Functinn Theorem, in particular then, by (47), (48):

. ek (m(x)) = V(x)) . (52)

! A sacond order Taylor expansion cf ¢*: ]

F(u) = w(m(e) Y+ {u-n{x)) Twg*(nx)) + Fu-m(x)) o244 (m(x)) (u=m(x)) (53)

, indeed agrees with (49) by substituting (50)-(52) in (53). Q

PR s P vy 2 Hi oMY

M S
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Remark 6: If the random vector g(x,b) is jointly Normal then

T
g 9060) < exp(yTm(x) - yTV(x)y)

so, w(y) is quadratic, and hence coincides with its Taylor series
approximation ¥(y). The same is true of course for v*. Therefore,

the approximations 5E(x) in Propositions 9 and 10 are exact.

If the constraints gi(x,b) >=ai are independent we can use

Proposition 8 and the Taylor expansion (49) to obtain:

Proposition 11: For (SP) with independent constraints, a second order

apprcximations 5E(x) of PE(x) is

5 1,1 2
Pe(x) fz;gz;—[(a- - mi(x)),]

where

mi(x) = Ebigi(x’bi)’ c%(x) = variance of gi(x,bi).

For stochastic RHS programs (SP-RHS) the above approximation

simplifies as follows: let u = Eb, denote by V the variance-

covariance matrix of b, and by 0% the variance of bi' Then, by
Proposition 9,

B : 5E(x) = sup {y' (u - 9(x)) - ]gyTVy}

- y20

When b ~ N(y,V) the approximation is exact; compare with Example 2.

d -~

The approximate entropic penalty PE induces an Approximate

Determipistic Primal problem to (SP):

. (A0P) inf (g (x) + PP (x)} .
X

L _an ¥ mmmanas

. N —WM w J . e Wn i ’m..‘.xs_,_d .
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By Proposition 9,this problem can be stated in terms of the saddle ’

function
- o T 1.7
k(x,y) = g,(x) + ply (a-m(x)) - 5 y V(x)y]

as

! ! (ADP) inf sup E(x,y) .
. x y=0

In the case of independent constraints, an explicit representation

of (ADP), based on Proposition 11 is

(ADP) inf {go(x) +p3 1 [(ay - mi(x))+]2}

X o%(x)

4 This, further simplifies for a Stochastic RHS problem to (see Prop. 11):

inf {g,(x) + B 51 ((0,(x) - ),0%} (54)
X o2
1
‘ Remark 7: If the variance of b, (o%) is large, then as seen from
(54), the contribution of the i-th constraint to the penalty §E is
small. Therefore, "ambiguous constraints" are effectively ignored in
the Approximate Deterministic Primal. The quantity l/o% thus

. serves as a "built-in" penalty parameter for the i-~-th constraint.

Remark 8: The approximate penalty function ﬁE acas not necessarily
- possess the propaerty that surely infeasihle solutioss are ruled out.
Therefcore, in (ADP) one should add tae constraints g(x) = a (see

J
Chap. 2). For (SP-RHS) the added constiaint are g(x) < brax’

o ettt il ini
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